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MY LAST WEEK'S SLEEP RECORD 1 To test which one performs better, we designed three tasks.
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What are data comics?



physical, social, political, and economic structures
of a region can place residents at varying risks
for vulnerability. Areas susceptible to violence

or natural disaster pose clear threats to individ-
uals. An individual's environment also affects

his or her development and behavioral choices.
Resources available in the physical and social
environments create the contexts within which
decisions are made about health, education, and
employment. Political and social environments
also dictate whether resources are accessible to
all adolescents. An examination of the residential
distribution of adolescents provides a baseline
for comparing geographical patterns of vulner-
ability. Within Uganda, by type of residence, the
majority of adolescents (87 percent) live in rural
versus urban areas. Figure 6 shows the distribu-
tion of adolescents aged 10 to 19 living in Uganda.
Regional distributions show Karamoja contains
only four percent of the adolescent population.
Kampala with a much denser population contains
4.6 percent of the population. The Eastern and
Western regions contain the largest proportions of
the adolescent population.

PROPORTION OF ADOLESCENTS AGED 10-19
BY REGION, UGANDA, 2011
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Household factors influencing
vulnerability

Household-level factors have direct impacts on the

ll-being of are the pri-
mary setting where adolescents live and engage in
activities. For this reason, the household environ-
ment and the people who live there have signifi-
cant impacts on the lives of adolescents. Physical
conditions of the home influence the health of
residents. Family structures and demographic
characteristics of household members affect the
knowledge, decisions, behaviors and interactions
in the environment of the adolescent.

Access to improved water sources and
sanitation

Unsafe water, inadequate sanitation, and poor
hygiene are among the five leading risk factors
responsible for one quarter of all deaths in the
world (WHO 2009). Unsafe water supplies and in-
adequate sanitation in homes increase exposure to
water-borne diseases and can cause diarrhea. En-
suring access to clean water sources and sanitation
is key to maintaining hygiene and health. Improved
water sources are those that either naturally pro-
tect water from contamination or are constructed
to do so. These include piped water, public taps,
standpipes, boreholes, tube wells, protected wells
and springs, and rainwater collection. Improved
sanitation includes constructs and systems that
prevent fecal contamination. These include flush or
pour toilets, ventilated pit latrines, pit latrines with
slabs, and composting toilets (UNICEF 2013b).

Housing conditions across East and Southern Afri-
ca are largely in need of improvement, and lack of
improved sanitation varies by country. In nearly all
of East and Southern Africa, over half of adoles-
cents either do not have improved sanitation or
share facilities with other households. Conditions
are worst in Madagascar and Mozambique where
fewer than four percent of adolescents live in
households with improved sanitation that is not
shared (Figure 7). Rwanda has the lowest propor-
tion of d—35 p hich is
still unacceptably high. Lack of access to improved
water sources affects lower proportions but is still
a problem in the region. In five countries, fewer
than half of adolescents have access to improved
water sources (Figure 8). Water conditions are
best in Namibia, where only 15 percent of adoles-
cents have no access to improved water.

In Uganda, overall access to improved water and
sanitation increased by a small but significant
percentage between 2006 and 2011 (Figure 9). In
2006, 33 percent of adolescents had no access to
improved water; in 2011, it is 30 percent. The pro-
portion of adolescents without access to improved

PERCENT OF ADOLESCENTS AGED 10-19 PERCENT OF ADOLESCENTS AGED
LIVING IN HOUSEHOLDS WITH NO 10-19 LIVING IN HOUSEHOLDS WITH
IMPROVED OR WITH SHARED SANITATION, NO IMPROVED WATER SOURCE, EAST
EAST AND SOUTHERN AFRICA AND SOUTHERN AFRICA
009 2 Somalia 2006 |IEEEEEEEGEG—_— o 3
2008 9.3 2009 (g o
Ethiopia 2011 .5 Zambia 2007 M s >
Malawi 2010 1 ique 2008  INEGEGE_—_—_—_— s 7
Somalia 2006 [IEEGE_—_—_——— . Tanzania 2010 INEEG_—_—_—)
Tanzania 2010 EEEEEEEEEGEG—_— o5 0 Ethiopia 2011 [N /s
Swaziland 2007 |IEEEG_—_—_—_—_——76.0 Kenya 2009 [N 409
Lesotho 2010 IEEEG_—_—_—_— 746 Swaziland 2007 IEEEG_—_T—-—_— s 3
Kenya 2009 |IEEEEGEG_—_—_—_—— 7.3 Uganda 2011 I 30.0
Zambia 2007 |IEEEG_—— 72 Rwanda 2011 [N 26.5
Namibia 2007 INEEG_—— 5. Burundi 2071 [N 23.9
Uganda 201 I— 4.5 Zimbabwe 2011 I 23,9
Burundi 207 I .7 Lesotho 2010 [ 53 7
Zimbabwe 201 I 0.9 Malawi 2010 [HE 20 5
Rwanda 2011 [IEEE—_— 352 Namibia 2007 147
O 20 40 60 8 100 0 20 40 60 80 100
Source: DHS 2007-2011; MICS 2006-2008. Source: DHS 2007-2011; MICS 2006-2008.

PERCENT OF ADOLESCENTS AGED 10-19 LIVING IN HOUSEHOLDS WITHOUT ACCESS TO
IMPROVED WATER AND WITHOUT ACCESS TO IMPROVED OR WITH SHARED SANITATION, IN
UGANDA, BY REGION, 2006 AND 2011

Water sources Sanitation or shared facilities
National National
Central 1 Central 1
Central 2 Central 2

East Central East Central

Eastern Eastern
Kampala Kampala
n/a
Karamoja Karamoja 053
North North | — 7 5
952
Southwest Southwest o
947
West Nile West Nile 793
Western Western 55.3 851
f T T 52 T T
0o 10 20 3 4 5 60 70 0 20 40 60 80 100

: DHS 2006 and 201,
Changes to the geographic boundaries were made to the North region in the 2011 DHS. The 2006 DHS North region is now divided into
the North and Karamoja. For this reason, rates for 2006 are not shown for the North since it is not comparable and Karamoja was not identi-
fied in the previous survey.



Data Comics

| — T — /E—‘:"
Seven = l" =
Genres = N — =
e — a— —_—
—— —
= P ee— — 4
Magazine Style Annotated Chart Partitioned Poster
&=y APL —
m !—E_.
Flowe Chart Comic Strip Slide Show FilmMideosanimation

Bach, Benjamin, Nathalie Henry Riche, Sheelagh Carpendale, and Hanspeter Pfister. "The emerging genre of data comics." IEEE computer graphics and
applications 37. no. 3 (2017): 6-13.



Data Comics

T e — e
Seven — ll — =
Genres s =
R — —
e — — 1
—— e —/ — —
Magazine Style Annotated Chart Partitioned Poster
&=y APL =
m s—é
Floww Chart Comic Strip Slide Show FilmMideolanimation

Bach, Benjamin, Nathalie Henry Riche, Sheelagh Carpendale, and Hanspeter Pfister. "The emerging genre of data comics." IEEE computer graphics and

applications 37. no. 3 (2017): 6-13.



\
!

Annotated Chart

i

/AQQ WOra or pnrase =

AUTO (s




Partitioned
Poster
(Infographic)

O_@D adh
aHo—om

Partitioned Poster

https://www.visualcinnamon.com/po
rtfolio/baby-spike

-

GRAPHIC
SCIENCE

-

Rabses Borm by Mente

Dy Shift
Births peak around 8 AM
then rise agan between nocn
30617, Hospeals typically
have more doctors and nurses
on hand durng the momng
and fewer bater i the day

Farly Riser

More babies than average g
are born on woekdays during

Gayhght hours. Fewes are .
born on weehends or at night,

primarily because lewer

hospaal staflers are on duty,

40 women tend mot 15 schedule

ther dekvery then. Despite

folkdore. 2 full moon has no effect

The Average

“,

76 Sclentitie American, July 2017

oy

Babies Born

0,000 pe

- by
60000 Y

Babies Born by Week

4oy

y

by Hour

Len,
" ek

Ary,

‘F

The Baby
Spike
Births peak on

weekdays during
daytime work hours

Two generations ago babies were
born pretty much spontancously
around the clock. But today in the
USS,, about half of all births are cesar
tuled by Mom

d by doctors con

can sections prese

or deliveries ind

cerned about the her's or baby's

health. These medical procedures
have skewed the days ¢

and hours of the day. during which
those little bundles of joy arrive

The procedures dominate be
more than 98 per
born in a hospital

ause

nt of infants are

spite what seems
to be the rising popularity of home
births. Far more babies now arrive on

weekdays than on weekends, most
between 8 AM. and 6 PM, “We can't
schedule spontaneous labor, obvious-
ly," says Neel Shah, a physician and
professor at Harvard Medical Sck
“But we can schedule delivery”
Mark Fischetti and Zan ;

matrong

Each graph shown U.S. data
averaged across 2084

’
More than average |

Gl
\ O 2% more

/
i & Fewer thanaverage
e

\m pont)

esany

(gl by VoA Bresmwr wind Zim Arsmsining

T o an A

et . ISR 1B DESLASE COMTRCR M RO

ST I




Data Comics

| — T — /E—‘:"
Seven = l" =
Genres = N — =
e — a— —_—
—— —
= P ee— — 4
Magazine Style Annotated Chart Partitioned Poster
&=y APL —
m !—E_.
Flowe Chart Comic Strip Slide Show FilmMideosanimation

Bach, Benjamin, Nathalie Henry Riche, Sheelagh Carpendale, and Hanspeter Pfister. "The emerging genre of data comics." IEEE computer graphics and
applications 37. no. 3 (2017): 6-13.



Life Presentatiol

' o

https.//www.ted.com/talks/

hans_rosling_shows_the b
est_stats_you_ve_ever_se
en?language=en

n\l



http://www.youtube.com/watch?v=hVimVzgtD6w&t=240

Data Vldeos

bt 1

" . .4.
I

tmmm T mmma IR mq "'"' "

s O

https.:.//www.youtube.com/watch?v= QPKK Qnijns



http://www.youtube.com/watch?v=QPKKQnijnsM
https://www.youtube.com/watch?v=QPKKQnijnsM

Space vs. Time oriented formats

Space oriented

Use space to structure information
Large and detailed images

Space == importance

Encourage exploration

Adapt to readers’ pace

> Reader driven

Time oriented

Use time to structure information
Sequences of images
Time+order == importance
Encourage explanation

Follow author's narrative

> Author driven
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Panel (sequences)
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Scientific comics Visual instructions
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The circulation of images have invited o KVICK so RT idea-instructions.com/quick-sort/ m
numerous interpretations and uses, 5 V1, CC by-nc-sa 4.0
and popular meanings have often overshadowed g
the original underpinning idea.
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Anyone who graduated from
high school will recognize the
diagram of a molecule or the
DNA double helix, without
necessarily understanding the
chemistry behind them.
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But as we venture ever deeper into the realms
of the invisible, from subatomic particles to 2
planet-wide networks, it becomes increasingly
difficult to visualize these phenomena with
traditional tools.

Farinella, Matteo. "Of Microscopes and Metaphors: Visual Analogy as a

Scientific Tool." The Comics Grid: Journal of Comics Scholarship 8 (2018). ideainstructions.com/quick-sort/
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Isotype, Arnold Gantz, ~1920

Maps can show the way birds go when they fly
north or south for the season.

Pacific Central Mississippi Atlantic
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Hot spots - the carbon atlas

Imagine if we could
capture all the annual CO2
emissions of a country
in a giant balloon...

...this is what the world would look like:

1 United States

Of course, that's not a fair representation.
Some countries consume more than others
simply because they have larger populations.
If we look at the average emission per person
a different picture emerges.

World total
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0/, growth in carbon emissions,

€O, emission growth of the highest 28% ftsons
50 Sumitacs, 1998 ¥ 2008 World carbon emissions are up from

7% 18.36n tons in 1980 — and with rapid

6% [ industrialzation n the developing
world, those numbers will ciimb higher,

The effect is delayed, which means even
if we stopped emitting carbon now, it
would go on increasing in the
atmosphere

Moreover, some counties are taking active steps to curb
their CO2 emissions, while others are raising rapidly:
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But freak weather events
and an avalanche of scentiic evidence
have forced i 10 rethink its position
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e comnon 58 % Teszoes
Rapid industrialization combined with

greater numbers of people moving 10
cities has provoked a huge rise in carbon
emissions — with China rapidly moving
10 become the world's greatest carbon
emitter in the next two years — some
scientists say this has happened aiready

Central &
South America
1.10bn ...co,

2 9 0/0 ?;vqwst;;;nmon emissions,

Increased freak weather events mean the
IPCC is concerned South America wil be
hard-hit by cimate change. Agriculture,
water suppiies and the unique natural
habitat could be affected by a tempera-
ture increase of up to 4C by the end of
the century

Africa
1.04bn weoco,

2 8 0/0 ‘g;;:;‘;g;umun emissions,

Its carbon emissions may be smail but
this s the continent most vulnerable to
the effects of climate change, hitting
food and water suppies, causing coastal
flooding and an increase in tropical
diseases such as malaria — as woll as
destroying parts of the ecosystem
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The region is a major contributor to
global greenhouse gas emissions,

through an ofl and gas industry which
produces over 30 percent of world oil
supply and over 10 percent of its gas

(c) Matteo Farinella, in

Wang, Z., Wang, S., Farinella, M.,
Murray-Rust, D., Henry Riche, N. and
Bach, B., 2019, May. Comparing
effectiveness and engagement of data
comics and infographics. In Proceedings of
the 2019 CHI Conference on Human
Factors in Computing Systems (pp. 1-12).
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Explaining data analysis https.//statscomics.github.io

Context, Motivation
& Problem Study

They can
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—and how
each connection is.
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In the real world, they are often not static,
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How can you properly visualize
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Whatis a good way to visualize them?
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Wang, Z., Ritchie, J., Zhou, J., Chevalier, F.
and Bach, B., 2020. Data Comics for Reporting
Controlled User Studies in Human-Computer
Interaction. IEEE Transactions on Visualization
and Computer Graphics, 27(2), pp.967-977.



Explaining data analysis

Data Collection &
Data Transformation

The complexity of test problems gradually increases in the test...

We recruited ")
participants to X 1 1
complete the study... A

l

Where we estimate their performance
on understanding the weighted graph
changes.

- REGION -

We used a

design for
the test problems, so
every single possible
combination was
present.

2 TECHNTOUES 3 TASKS
2 S12ES 2 eTIrES

v [E— £
nEEL

j lwe

Ll

Also, every
participant was
doing all conditions.

38 58] 2]
350 58} ..

A user’s responding time will be
recorded and log-transformed...

20 Il

At the end, they will also
be asked to give answer
on which techniquethey
prefer.

>0




Explaining data analysis

\'

Results

Result shows that © Adjacency matrices perform better for visualizing

weighted graph changes under most conditions...

Which technique
let users
understand
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?
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And people like
them, too! @

Which technique
do users ?

Overall 125

Task 2 hod

Task 3 138

Likert Scale

- ADJACENCY
MATRICES




Explaining data analysis
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Results

-_—
Result shows that © Adjacency matrices perform better for visualizing
weighted graph changes under most conditions...

And people like
them, too! ®

Question Question
Question
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We expected node-
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g
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performance for S
dense datasets.

This is verified true,
but we didn't expect it
will decrease for large
datasets as well,

34

-1

We thought matrices

would outperform

node-link diagrams e
for Trend (H1) and 2%
Region (H3) tasks on :
dense datasets_.

Turns out this applies
to all tasks across all -
datasets! é

35

We thought for the
Connectivity task, matrices
should NOT outperform
node-link diagrams...
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Butwell, itdid. |
36
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Les Misérables co-occurrence network

https://github.com/micahstubbs/d3-adjacency-matrix-layout

Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., & Dragicevic, P.
(2015). Time curves: Folding time to visualize patterns of temporal evolution in
data. IEEE transactions on visualization and computer graphics, 22(1),
559-568.



Find support....

0000

The wheel preferred
scientists -g:le en;ineu-w

Arc Diagram Area Graph Bar Chart Box & Whisker Brainstorm
Plot
Bubble Chart Bubble Map Bullet Graph Calendar Candlestick
Chart
°59)
(10D
J)
Chord Diagram Choropleth Map  Circle Packing Connection Density Plot
! ‘ ‘ Map Bodyparts
Donut Chart Dot Map Dot Matrix Error Bars Flow Chart
Chart
Flow Map Gantt Chart Heatmap Histogram lllustration
Diagram Visual Language for Designers by Connie Malamed

https://datavizcataloque.com/




Visuadlization Cheat Sheets

Parallel

Coordinates

Let's chanse the arranﬂemen’r of the axes..

y=Galories

Calories (gr.) 2=Protein (g)

OO Poteins  © &
© Fibers (gr.)
1 1 L {3 1
2 4 6 8 10 12 14 16

58888

Cam
x=Fiber (g)

we now connect the values for each &uit with a line.

y=Calories z=Protein (g) x=Fiber (g)
7 = 14 =|
500 = 6 = 12 =

400 = | - =5 1‘
300 =4 .

200 4 Calories: 190

J

ity Protein: 0.3 o

Construction

y=Calories.

2=Protein (g)

And obtain
our Paralel
Coordinates
Plot Cabbrevi-
ated: PCP).

s

wike so :

©=Fber @) yeCalores 2=pron o) eiber G)

\ \ 5 5
Axes' = Dimensions

yﬁﬁx\tgi k‘ppm-m © }-v ©
74

500 =

5 4
400

Banana
dpccan]

Persimmons| \

200 =
Avocado

Orange
100 =

“’Polal\nes" = data elements

Wang, Z., Sundin, L., Murray-Rust, D. and Bach, B.,
2020, April. Cheat Sheets for Data Visualization
Techniques. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing
Systems (pp. 1-13).



Visuadlization Cheat Sheets

Parallel

Coordinates

Axes

Calories (g)  Protein (g)

A

500 —

Anatomy

Dimensions

N

Fat (g) Fiber (g)

A A

400 —

300 — =

200

100 —

_—

- 1 g

A
B ——

data elements

Y
le) (1) e 9 https://visualizationcheatsheets.github.io

EY NC ND

Wang, Z., Sundin, L., Murray-Rust, D. and Bach, B.,
2020, April. Cheat Sheets for Data Visualization
Techniques. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing
Systems (pp. 1-13).



Visuadlization Cheat Sheets
Parallel

Coordinates

Parallel lines

Positive Correlation

Correlations indicate that h’\ﬁh
values in on data dimensions
co-occur with high values in
another dimension.

Correllations are not causa-
tione!

Cross'\nﬁ nes
we3aﬁve Correlation

nverse correlations indicate
that high values in one data
dimension co-occur with low
values in another data dimen-
sion.

Convevginﬁ lines
Groups
Groups indicate man

elements with the same
value or similar values.

Visval Patterns

A correlation is
visible through
rather paralel
polyines
between two
axes,

An inverse
correlation is
visible +hrou3h
lots of crossi
polyines
between two
axes,

Groups are visible b

H H

Stro y , Weak corre-
correlation alation
Stro weak

W% neqgative
cortelation corralation

many lines intersecti
an axis at the same

position.

Wang, Z., Sundin, L., Murray-Rust, D. and Bach, B.,
2020, April. Cheat Sheets for Data Visualization
Techniques. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing
Systems (pp. 1-13).



Visudlization Cheat Sheets

Parallel
Coordinates

Pitfalls

Axis scales Truncated axes

125
120
S -
110 =
105 =
100 =
95 -

90 =

%-
!

Difkerent dimensions usualy have Valugs on axes can 5’“5“'*‘
different scales and units. form values other than ©.

- )
‘.@,’ ? () https://visualizationcheatsheets.github.io

¥ NC ND

values on axes can be either
o\eceno\'\rg or aceno\‘mﬁ.




Visuadlization Cheat Sheets

https://visualizationcheatsheets.github.io
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means [98
Overal .70 [61,

Energy

Alliances |Comic
Text
Infographic

Economics

Overall

Comic | .13 [o..zq
differences a

13 [0,.2
o[-0

Text
Infographic
Text

Comi
Infographic

Are data comics effective?
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RENEWABLES' MIX IN POWER GENERATION IN EURQP

In this c@iit. the bar on each
Jsents renewables as a
Fe of national electricity
lon in 20118 along with the

rease in level by 20178 O
average, the percentage
increased by 82%

Renewable energy plays an increasingly important role in the
European energy mix. From the European electricily generation in
2017 (Fig1. Leh), fossil energy sources like gas. hard coal ang
lignite are still dominant making up 44.4% of the EU electnc
generation mix. Renewable energy (wind, solar bicfgass and hygf)
follows with 30.0%, then nuclear with 25.6%.
(20
g
Cout with low / percentages _are
Sioffhia, Buigaria, Slovaki
Caffch Rep, and Hungary,

EU electricity generation mix, 2017,
percent

In contrast, the ifffentages are relal
high in Finland, ifand, United Kingd
Portugal. Spain,

. BeM a
, for example, show \ lar

els in 2017, but have been ing
rent rates,

me

5 Hydro statistics and some EU member states not included due to low data quality



Effectiveness of data comics

Pros:

Visual overview

Guide readers

Adapt to reader pace

Space == narration

Include illustrations besides vis
Memorable layout == narration

Can be shared easily



Effectiveness of data comics

Cons:

Careful with detailed images -> size
Avoid repetition -> highlight changes
Require space

Non-interactive



Creating data comics



Creation process

ANALYSIS

Extract insight

Message Collect relevent data




Creation process

Narration

Sequence of messages,
arguments and data points

Introduction, middle and end

Message Visualisation Visualising the data




Creation process

Narration The way audience
reading through the
comic

Message Visualisation Text  Picture Provide evidence in data




Creation process

Narration Latout

Message Visualisation Text Picture Transation

placement of panels /
contents in each panel

Connections between
information



graphic design

storytelling : : :
Drawing & illustration
storytelling Skills visualization
design
creating

data analysis visualizations
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Data Comics Design Patterns

Narrative Temporal Faceting Visual Encoding Granular

=|I°N|8 TRIPRiE
— 1= i I_Il.l I I | /M F (| oo
2016 2017 2018 ¥ (]

Temporal sequence \ z!: Build-up Zoom
Exposé
Multiple facets | ~ ... e
O °pg AN
i (m] o =g, 3
— e w

':8 : -:‘ .. .............
IZ] .. .. E] Cut-out
-~ [*] *
Time-grid Legend
Multiple-explanations M

? I& |I Contrast I*‘ Lj | i

) L]

Question & answer Time-nesting Annotated transition Lens

Bach, Benjamin, et al. "Design patterns for data comics." Proceedings of the 2018 chi conference on human
factors in computing systems. 2018.
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Multiple Explanation
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olecence,
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Temporal Change
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http://www.youtube.com/watch?v=9u1tg2gHNAc

Interactive
Data_
Comics

Home
Publication
Examples
Tutorial

Get Started
Documentation
Tips

Online editor
About

& THE UNIVERSITY
)- of EDINBURGH

I) TORONTO

SCARBOROUGH

Microsoft'

Research

]
TUDelft

Interactive Data Comics

sssss  assss

Watch on @3 Youlube

locarsersaron

Data comics are a way of effectively communicating with data through data
visualizations. They are inspired by the visual language of comics. This project adds
interactivity to data comics to support exploration, explanation, and
engagement.

Interactions are specified using a JSON specification and which can be rendered
using our online editor.

Interactions include:

¢ Hiahliaht

https.//interactivedatacomics.github.io/



Wrapping up



Data Comics

Combining time and space oriented storytelling
- Familiar to many people
- Easily accessible through many media
- Widely applicable
- Effective for breaking down complexity
- Huge design space: expression, style, ...
- Design patterns to help creation
- Data-driven storytelling *is* complicated
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Data Comics

- Combining time and space oriented storytelling
- Familiar to many people

- Easily accessible through many media

- Widely applicable

- Effective for breaking down complexity

- Huge design space: expression, style, ...

- Design patterns to help creation

Data-driven storytellino




http://datacomics.net
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Bach, Benjamin, et al. "The emerging genre of data comics." IEEE computer graphics and applications 37.3 (2017): 6-13.
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